Iful

Кузамишев Алим Гисаевич

РАЗМЕРНЫЕ ЗАВИСИМОСТИ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ОДНОКОМПОНЕНТНЫХ МЕТАЛЛИЧЕСКИХ НАНОЧАСТИЦ

1.3.14 — Теплофизика и теоретическая теплотехника

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена на кафедре физики наносистем ФГБОУ ВО «Кабардино-Балкарский государственный университет им. Х.М. Бербекова»

Научный руководитель: Шебзухова Мадина Азметовна,

доктор физико-математических наук, доцент, заведующий кафедрой физики наносистем ФГБОУ ВО «Кабардино-Балкарский

государственный университет им. Х.М. Бербекова»

Официальные оппоненты: Саввин Владимир Соломонович,

доктор физико-математических наук, доцент, профессор кафедры общей и специальной физики Обнинского института атомной энергетики—филиала ФГАОУ ВО «Национальный исследовательский ядерный университет «МИФИ» (г. Обнинск)

Элимханов Джабраил Зайндиевич,

кандидат физико-математических наук, доцент, директор центра проблем материаловедения ГКНУ «Академия наук Чеченской республики»

(г. Грозный)

Ведущая организация: ФГБОУ ВО «Тверской государственный

университет» (г. Тверь)

Защита состоится « 05 » декабря 2025 года в 15^{00} час. на заседании диссертационного совета 24.2.308.01 при ФГБОУ ВО «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» по адресу: 360004, г. Нальчик, ул. Чернышевского, 173, зал заседаний диссертационного совета.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» и на сайте https://diser.kbsu.ru/

Автореферат разослан	«	>		2025	Γ
----------------------	----------	---	--	------	---

Ученый секретарь диссертационного совета, доктор физико-математических наук, профессор

А.А. Дышеков

ОБЩАЯ ХАРАКТЕИСТИКА РАБОТЫ

Актуальность исследования. Современный XXI-й темы век характеризуется масштабным использованием нанотехнологий. Широкое и повсеместное внедрение наноструктурных материалов, а также способов их получения качественно изменили свойства современных технологий и их особенность Самая главная наноразмерных объектов возможности. заключается в том, что уменьшение размеров частиц вещества ниже некоторого порогового значения приводит к существенному изменению их свойств. Размерный эффект для большинства современных материалов варьируется в диапазоне от 1 до 100 нм.

Особую актуальность в науке и технологиях в наши дни приобретают c изучением размерных зависимостей исследования, связанные теплофизических свойств наночастиц и наносистем. Большой интерес исследователей привлекают металлические наночастицы, что связано с их малой размерностью и специфическими физико-химическими свойствами. Эти частицы обладают большой поверхностной активностью, что делает их идеальными ДЛЯ катализаторов, сенсоров, маркеров И других функциональных материалов. Металлические наночастицы играют важную роль в разработке солнечных элементов, водородных хранилищ и других возобновляемых источников энергии. Наночастицы платиновых групп металлов широко используются в катализе различных химических реакций, а наночастицы серебра и золота широко применяются в электронных устройствах и сенсорах благодаря их уникальным оптическим свойствам.

Актуальность теоретического изучения размерных зависимостей теплофизических свойств наночастиц связана с тем, что соответствующие экспериментальные исследования достаточно затруднительны и дороги. При этом, при проведении подобных теоретических и экспериментальных исследований особая роль отводится изучению поверхностных эффектов, которые играют доминирующую роль в свойствах наночастиц, а также в их поведении. Это важно в первую очередь по причине того, что сама

наночастица может быть размером с толщину межфазного слоя. Вследствие этого факта ее структура и свойства в большинстве случаев будут похожи и даже идентичны характеристикам межфазного слоя. Поэтому при изучении свойств и поведения таких частиц нужно принимать во внимание размерные эффекты поверхностных характеристик наночастиц. Это касается и теплофизических свойств металлических наночастиц в однокомпонентных системах.

С фундаментальной точки зрения актуальность исследований по теме диссертации определяется изучением свойств искривленных границ раздела между дисперсной частицей и дисперсионной средой для более полного построения теории поверхностных и межфазных явлений, а также изучения процессов фазового равновесия в однокомпонентных и многокомпонентных системах.

Из изложенного выше вытекает актуальность изучения размерных зависимостей поверхностных свойств в однокомпонентных системах, и возникает необходимость в разработке обоснованного подхода по нахождению теплофизических свойств однокомпонентных металлических частиц при последовательном учете наноразмерных эффектов.

Степень разработанности темы исследования. В диссертации был литературный обзор современных теоретических И экспериментальных исследований по изучению размерных зависимостей свойств теплофизических наночастиц, который показал, зависимости во многих случаях остаются неизвестными или недостаточно изученными. Так, экспериментальное изучение искривленной границы раздела между дисперсной частицей и дисперсионной средой является достаточно затруднительной и дорогой задачей. Это объясняется сложностью проведения экспериментов с такими маленькими объектами и увеличением эффектов. Поэтому значимости поверхностных особую важность приобретают теоретические методы изучения таких границ и объектов.

За последние десятилетия среди существующих теоретических методов

ПО изучению наночастиц наносистем стоит отметить широко развивающиеся компьютерного атомистического методы ИЛИ При этом достаточно активно развивается и бурно моделирования. прогрессируют метод молекулярной динамики и метод Монте-Карло с использованием различных межатомных потенциалов взаимодействия. Отдавая должное таким работам, стоит отметить, что подобные расчеты по зависимостям теплофизических свойств от размеров оказываются достаточно ресурсоемкими и чаще всего позволяют исследовать лишь сравнительно небольшие системы или кластеры с ограниченным числом частиц.

В связи с этим, достаточно актуальной является задача расширения аппарата термодинамики поверхностных и межфазных границ применительно к наночастицам для исследования размерных зависимостей их теплофизических свойств. При этом многие исследователи полагают, что такой расширенный термодинамический аппарат позволит работать с нанообъектами, которые имеют далекое от термодинамического предела количество атомов. Данное обстоятельство может значительно обогатить и дополнить возможности квантово-механического моделирования.

Цели и задачи исследования. *Целью* данной диссертационной работы являлась разработка теоретических подходов для нахождения размерных зависимостей теплофизических свойств (поверхностного натяжения, температуры, энтропии и теплоты плавления, а также коэффициента теплового расширения) однокомпонентных металлических наночастиц сферической формы.

Для реализации поставленной цели были определены следующие задачи:

- 1. Используя термодинамический метод разделяющих поверхностей, получить новое уравнение для размерной зависимости поверхностного натяжения наночастицы на границе с макроскопической фазой в изобарических условиях;
 - 2. Вывод уравнения размерной зависимости температуры плавления и

тройной точки однокомпонентных наночастиц сферической формы на границе с жидкой макроскопической фазой с использованием аппарата термодинамики дисперсных систем;

- 3. Получение новых выражений для нахождения энтропии и теплоты плавления, а также коэффициента теплового расширения однокомпонентных наночастиц сферической формы в зависимости от их размера на основе теории фазового равновесия в дисперсных системах;
- 4. На основе полученных новых выражений провести численные расчеты, а также сравнение с экспериментом размерных зависимостей поверхностного натяжения, температуры, теплоты и энтропии плавления, коэффициента теплового расширения для монометаллических наночастиц.

Научная новизна

- 1. Впервые получено уравнение зависимости поверхностного натяжения монодисперсной частицы от радиуса кривизны поверхности разрыва, находящейся в макроскопической дисперсионной фазе, из которого следуют два основных типа данной зависимости (монотонная и немонотонная с максимумом).
- 2. Найдены новые выражения для размерных зависимостей температуры плавления и температуры тройной точки дисперсных частиц сферической формы в однокомпонентной системе твердая наночастица—жидкий расплав—насыщенный пар.
- 3. Получены новые соотношения для размерных зависимостей калорических величин (энтропии и теплоты плавления), а также коэффициента термического расширения монодисперсных наночастиц сферической формы, находящихся в макроскопической фазе в изобарических условиях.
- 4. С использованием новых соотношений, полученных в работе, впервые проведен полный комплекс численных расчетов размерных зависимостей теплофизических свойств наночастиц в однокомпонентных системах поверхностного натяжения, температуры, теплоты и энтропии плавления, а

также изобарного коэффициента термического расширения металлических наночастиц сферической формы, которые продемонстрировали хорошее согласие с экспериментальными и теоретическими данными, имеющимися в литературе.

Научная и практическая значимость работы. В ходе проведения диссертационного исследования были получены новые уравнения для нахождения зависимостей ряда теплофизических свойств от размера наночастиц, которые могут быть рекомендованы для решения прикладных и практических задач в области нанотехнологий, например для использования их в роли нанокатализаторов, элементов электронной техники, а также структурных единиц новых композиционных материалов.

Выявленные особенности поведения поверхностного натяжения и температуры плавления с изменением размерного фактора могут существенно дополнить понимание закономерностей и механизмов фазовых переходов в однокомпонентных наночастицах.

Выполненные В диссертации численные расчеты размерных зависимостей теплофизических свойств металлических дисперсных частиц в однокомпонентных системах, таких как поверхностное натяжение, энтропия и теплота плавления, а также коэффициент температура, термического расширения, могут быть полезны при разработке новых технологий получения наночастиц и наноструктурированных материалов.

Методология и методы исследования. В диссертации применялся аппарат термодинамики поверхностных и межфазных явлений с использованием метода двух разделяющих поверхностей: поверхности натяжения и эквимолекулярной разделяющей поверхности, проведенных внутри межфазного слоя. При выборе такой методологии для рассмотрения искривленных границ раздела между дисперсной частицей и дисперсионной средой удается перейти от термодинамики поверхностных явлений Гиббса к наноразмерным объектам с учетом возникающих различных физических эффектов.

Все результаты, полученные в рассмотренных подходах, являются корректными и справедливыми при изменении размера поверхности натяжения вплоть до нуля. Следуя выводам академика А.И. Русанова [1], можно сказать, что при рассмотрении наноразмерных объектов наиболее целесообразным в плане установления границ применимости существующих методов, является выбор именно поверхности натяжения в качестве разделяющей поверхности.

Основные положения, выносимые на защиту

- 1. Новое уравнение для размерной зависимости поверхностного натяжения сферической наночастицы, находящейся в массивной объемной фазе при изобарных условиях, показывающее возможность существования двух основных типов зависимости монотонной и немонотонной с наличием максимума.
- 2. Новые выражения размерной зависимости температуры плавления дисперсных частиц сферической формы, а также температуры тройной точки в однокомпонентной системе твердая частица—жидкий расплав—насыщенный пар.
- 3. Новые соотношения для размерных зависимостей энтропии и теплоты плавления, а также коэффициента термического расширения однокомпонентных наночастиц, имеющих сферическую форму при нахождении их в макроскопической фазе в изобарических условиях.
- 4. Способ и результаты численных расчетов, которые были выполнены с помощью новых выражений, полученных для размерных зависимостей теплофизических свойств металлических наночастиц, имеющих сферическую форму и находящихся на границах раздела твердое тело жидкость и жидкость пар.

Степень достоверности результатов работы. Надежность, а также достоверность результатов представленной научной работы обеспечивается следующими выводами:

1. Новые уравнения для размерных зависимостей теплофизических

свойств однокомпонентных дисперсных частиц, которые были получены в данной диссертационной работе, удовлетворяют основным положениям термодинамики дисперсных систем, развитой академиком А.И. Русановым [1];

- 2. В ходе проведенного исследования были получены соотношения для нахождения размерных зависимостей поверхностного натяжения $\sigma(r)$ и температуры плавления $T_m(r)$ монодисперсных частиц, находящихся в жидкой макроскопической фазе, из которых, как частные случаи получаются известные уравнения: для зависимости $\sigma(r)$ формулы Толмена и Русанова, а для $T_m(r)$ известное уравнение Гиббса-Томсона;
- 3. Результаты выполненных расчетов размерных зависимостей теплофизических характеристик монометаллических наночастиц сферической формы (включая поверхностное натяжение, температуру, энтальпию и теплоту плавления, а также коэффициент объемного расширения) продемонстрировали высокую степень корреляции полученных результатов экспериментальными И теоретическими данными, представленными в научной литературе как в качественном, так и в количественном отношении.

Личный вклад автора. Основная цель и задачи диссертации были сформулированы научным руководителем диссертанта. Соискатель принимал личное участие в получении, обсуждении, а также интерпретации научных результатов совместно с коллективом соавторов. Численные расчеты по полученным новым соотношениям были проведены и подготовлены к публикациям лично соискателем.

Апробация результатов исследований. Все результаты, полученные в рамках выполнения научного исследования, в полном объеме были доложены диссертантом на следующих региональных и международных конференциях: International interdisciplinary symposium «Physics of surface phenomena, interphase boundaries and phase transitions», РФ, пос. Эльбрус, 2019 г; Национальная научно-практическая конференция «Восемьдесят пять

лет Кабардино - Балкарскому государственному университету», г. Нальчик, 2019 г; International scientific and practical conference «Modern methods of surface research and diagnostics», г. Грозный, 2021 г; XII and XIV International scientific and technical conference «Micro- and nanotechnologies in electronics», г. Нальчик, 2021 г, 2024 г.

Публикации. По теме диссертации было опубликовано 7 научных статей. Из них 5 работ опубликованы в рецензируемых журналах из перечня ВАК РФ, 3 статьи индексируются в международных базах данных Scopus и Web of Science.

Структура и объём диссертационной работы. Диссертационная работа состоит из 5 глав с выводами после каждой главы. В конце диссертации приводятся общие выводы, а также список цитируемой литературы, который имеет 205 литературных источников. Полный объем составляет 149 страниц. В тексте диссертации имеется 33 рисунка и 8 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, освещена степень ее разработанности, сформулированы цель и задачи, научная новизна, теоретическая и практическая значимость работы, изложены основные методы исследования, а также приведены положения, выносимые на защиту. Также в этом разделе приводятся сведения о публикациях и личном вкладе соискателя, дается обоснование достоверности результатов и информация об апробации работы.

В первой главе был проведен литературный обзор научных работ, посвященный изучению существующих теоретических и экспериментальных методов исследования размерных зависимостей теплофизических свойств однокомпонентных металлических наночастиц, который показал актуальность и перспективность применения термодинамического подхода для изучения теплофизических характеристик искривленных границ раздела.

По результатам этого обзора был сделан вывод о том, что

экспериментальные данные ПО изучению размерных зависимостей поверхностного натяжения, температуры, теплоты и энтропии плавления, а также коэффициента термического расширения В большей степени посвящены плоским границам раздела, при ЭТОМ аналогичное экспериментальное изучение искривленных границ достаточно затруднено, что связано со спецификой проведения эксперимента в условиях тонкого межфазного слоя.

В обзорной главе было отмечено, что литературные данные по размерной зависимости поверхностного натяжения $\sigma(r)$, достаточно часто имеют качественные различия. Так, большинство уравнений для нахождения этой зависимости в однокомпонентной системе являются разновидностями известной формулы Толмена [2], которая не является пригодной для описания малых наночастиц. Также отмечается, что в литературе нет единого мнения о способе введения знака параметра Толмена.

Из проведенного литературного обзора также следует вывод, что размерные зависимости теплоты и энтропии плавления однокомпонентных наночастиц исследованы гораздо меньше по сравнению с температурой плавления, что предполагает их дальнейшее исследование.

Во второй главе приведены результаты исследований зависимости сферических поверхностного натяжения OT размера наночастиц, находящихся на границе с массивной фазой при условии постоянства давления в ней и с учетом влияния температуры на фазовое равновесие. Объектом рассмотрения является однокомпонентная система, состоящая из двух фаз: α – фазы (сферическая наночастица) и β-фазы (макроскопическая среда). В качестве размера наночастицы выбирается поверхность натяжения радиусом r, а также в рассмотрение вводится еще одна разделяющая поверхность — эквимолекулярная разделяющая поверхность r_e . Расстояние между двумя разделяющими поверхностями δ – есть длина или параметр Толмена ($\delta=r_e-r$) [1].

Как было отмечено в первой главе, в литературе наибольшее внимание уделяется установлению зависимости поверхностного натяжения от размера в изотермических условиях. Между тем, при диспергировании одной из сосуществующих фаз α внутри другой фазы β в двухфазной системе изменяется также температура фазового равновесия. По этой причине было интересно рассмотрение зависимости $\sigma(r)$ с учетом влияния размера на равновесия дисперсионной частицы, находящейся температуру В дисперсионной среде в равновесных условиях. В работе [3] было получено дифференциальное уравнение зависимости $\sigma(r)$, учитывающее влияние температуру фазового равновесия дисперсной находящейся в дисперсионной среде. При этом влияние размера на величину σ рассматривалось при условии постоянства давления ($P^{(\alpha)} = P^{(\beta)} = const$). Это уравнение является аналогом уравнения Гиббса-Толмена-Кенига-Баффа [1], справедливого в изотермических условиях:

$$\frac{1}{\sigma} \left(\frac{d\sigma}{dr} \right)_{\rho^{(\beta)}} = \frac{\frac{2\delta}{r^2} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{\upsilon^{(\alpha)}}{\omega \delta} (\rho_{\upsilon} - \rho_{s}) \right]}{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} + \frac{\upsilon^{(\alpha)}}{\omega \delta} (\rho_{\upsilon} - \rho_{s}) \right]}, \tag{1}$$

где $\rho_v = (v^{(\sigma)} - v^{(\alpha)})/(v^{(\beta)} - v^{(\alpha)})$, $\rho_s = (s^{(\sigma)} - s^{(\alpha)})/(s^{(\beta)} - s^{(\alpha)})$, s, v, ω – энтропия, молярный объем и молярная площадь в соответствующих α , β объемных фазах и поверхностном σ -слое, σ – поверхностное натяжение, r – радиус поверхности натяжения, δ – параметр Толмена.

Интегрирование (1) на всем интервале размеров позволяет получить уравнение для размерной зависимости поверхностного натяжения в изобарических условиях. При этом данное уравнение было решено с учетом зависимости безразмерной величины $\frac{v^{(\alpha)}}{\omega \delta}(\rho_v - \rho_s)$ от размера. Запишем уравнение (1) в виде:

$$\left(\frac{d\sigma}{\sigma}\right)_{P^{(\beta)}} = \frac{dr}{r} - \frac{r^2 dr}{r^3 + 2\delta dr^2 + 2\delta^2 fr + \frac{2}{3}\delta^3},$$
(2)

где
$$d=1+rac{\Delta\delta}{\delta}, f=1-rac{1}{3}\Big(rac{\Delta\delta}{\delta}\Big)rac{lpha_{v}^{(lpha)}}{\delta}.$$

Вводя безразмерную величину $x = r/\delta$, получим

$$\left(\frac{d\sigma}{\sigma}\right)_{P^{(\beta)}} = \frac{dx}{x} - \frac{x^2 dx}{(x+a)(x^2 + bx + c)},$$
(3)

где a+b=2d, ab+c=2f, ac=2/3.

При решении (3) надо рассматривать два случая: $4c>b^2$ и $b^2>4c$. В первом случае решение записывается в виде

$$\sigma = A_p \sigma_{\infty} x \frac{\exp\left[A_{P_0} \operatorname{arctg}\left(\frac{2x+b}{\sqrt{4c-b^2}}\right)\right]}{\left(x+a\right)^{n_0} \left(x^3 + 2dx^2 + 2fx + \frac{2}{3}\right)^n},\tag{4}$$

где
$$A_{P_0} = \frac{2ac+bc-ab^2}{\sqrt{4c-b^2}(a^2-ab+c)}$$
, $A_P = \exp\left[-A_{P_0} \arctan(\infty)\right]$, $n_0 = m-n$, $m = a^2/(a^2-ab+c)$,

$$n=(c-ab)/[2(a^2-ab+c)].$$

Во втором случае искомое выражение имеет вид

$$\sigma = \frac{\sigma_{\infty} x}{\left| (x+a) \right|^m \cdot \left| (x^2 + bx + c) \right|^n} \left(\left| \frac{2x + b - \sqrt{b^2 - 4c}}{2x + b + \sqrt{b^2 - 4c}} \right| \right)^{B_{R_0}}, \tag{5}$$

где
$$B_{P_0} = \frac{1}{2} \frac{2ac + bc - ab^2}{\sqrt{b^2 - 4c}(a^2 - ab + c)}$$
.

Искомая зависимость $\sigma(r)$ была найдена для 14-ти металлов (таблице 1). Расчет проводился для жидких нанокапель на границе с собственным паром по соотношениям (4) и (5).

Для определения характерных особенностей зависимостей $\sigma(r)$ были построены графики для жидких нанокапель олова и никеля (рис.1 и 2). Построения выполнены в относительных координатах для разных значений d и f, которые были рассчитаны по характеристикам индивидуальных веществ, взятых из литературы.

Таблица 1 — Размерная зависимость поверхностного натяжения металлических наночастиц (в относительных координатах)

Me	r/δ								
	1,0	1,5	2,0	2,5	3,0	5,0	10,0	15,0	20,0
	$\sigma(r)/\sigma_{\infty}$								
Li	0,877	1,030	1,088	1,107	1,111	1,092	1,055	1,038	1,029
Na	0,796	0,955	1,026	1,057	1,069	1,069	1,045	1,032	1,025
K	1,196	1,315	1,313	1,281	1,248	1,161	1,084	1,057	1,043
Rb	1,011	1,153	1,188	1,187	1,175	1,126	1,070	1,048	1,036
Cs	1,108	1,240	1,256	1,239	1,216	1,146	1,078	1,053	1,040
Sn	1,319	1,400	1,363	1,312	1,268	1,167	1,085	1,057	1,043
Pb	0,672	0,833	0,919	0,965	0,991	1,022	1,022	1,017	1,013
In	0,634	0,796	0,886	0,936	0,965	1,006	1,014	1,012	1,010
Cu	0,573	0,734	0,830	0,888	0,924	0,980	1,001	1,003	1,003
Ag	0,755	0,915	0,991	1,027	1,044	1,054	1,038	1,027	1,021
Au	0,690	0,850	0,935	0,979	1,003	1,029	1,025	1,019	1,015
Ni	1,585	1,625	1,527	1,430	1,356	1,207	1,101	1,067	1,050
W	0,625	0,786	0,877	0,929	0,959	1,002	1,012	1,011	1,009
Mo	1,605	0,766	0,860	0,914	0,946	0,994	1,008	1,008	1,007

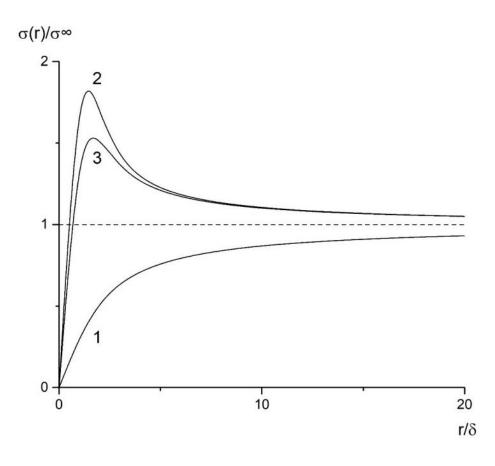


Рисунок 1 — Зависимость поверхностного натяжения жидких нанокапель никеля на границе с паром в относительных координатах

$$(1-d=1, f=1, 2-d\neq 1, f=1, 3-d\neq 1, f\neq 1)$$

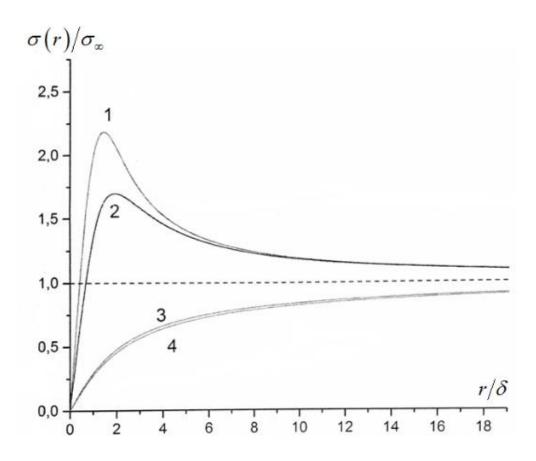


Рисунок 2 — Зависимость поверхностного натяжения жидких нанокапель олова на границе с паром в относительных координатах

$$(1-d\ne 1,f=1$$
 при $\delta=0$,029 нм; $2-d\ne 1,f\ne 1$ при $\delta=0$,029 нм; $3-d\ne 1,f=1$ при $\delta=0$,028 нм; $4-d\ne 1,f\ne 1$ при $\delta=0$,028 нм)

Обращает на себя внимание тот факт, что в отличие от изотермических условий, при изобарных условиях наблюдается немонотонная зависимость σ от радиуса поверхностного натяжения r. Как видно из рисунков 1 и 2, величина σ сначала возрастает при уменьшении r, а затем уменьшается и стремится к нулю.

На графике имеется максимум, положение которого определяется условием

$$\left(\frac{r}{\delta}\right)_{\text{max}} = -\frac{f}{2d}\left(1 + \sqrt{1 - \frac{4}{3}\frac{d}{f^2}}\right). \tag{6}$$

Учет зависимости слагаемых от размера в квадратных скобках в уравнении (1) приводит к смещению максимума функции в сторону больших

значений радиуса поверхности натяжения. Расчеты показали, что, например для никеля это изменение $\Delta \sigma$ составляет около 23%, когда его поверхностное натяжение понижается на 20% (таблица 2).

Таблица 2 – Зависимость поверхностного натяжения металлических наночастиц в точке максимума в относительных координатах (расчет по формулам (4), (5) и (6))

Me	<i>f</i> ≠1		f=1	1	$\Delta\sigma_{max}$,	$\Delta(r/\delta)_{max}$,	
	$(\sigma/\sigma_{\infty})_{max}$	$(r/\delta)_{max}$	$(\sigma/\sigma_{\infty})_{max}$	$(r/\delta)_{max}$	%	%	
Li	1,111	2,953	1,155	2,219	3,8	33	
Na	1,074	3,771	1,100	2,874	2,4	31	
K	1,321	1,700	1,552	1,261	14,9	35	
Rb	1,190	2,186	1,300	1,586	8,5	38	
Cs	1,257	1,885	1,436	1,366	12,5	38	
Sn	1,400	1,473	1,510	1,293	7,3	14	
Pb	1,024	6,688	1,028	5,903	0,4	13	
In	1,014	8,862	1,016	7,956	0,2	11	
Cu	1,004	18,121	1,004	15,702	0,0	15	
Ag	1,055	4,401	1,069	3,577	1,3	23	
Au	1,030	6,006	1,035	5,195	0,5	16	
Ni	1,640	1,301	2,055	1,054	20,2	23	
W	1,012	9,553	1,014	8,474	0,2	13	
Mo	1,008	11,602	1,010	10,197	0,2	14	

Таким образом, результаты исследований, представленные во второй главе диссертационной работы, показали возможность существования двух основных типов зависимости поверхностного натяжения от радиуса кривизны поверхности разрыва (монотонная и немонотонная с максимумом), которые следуют из теории фазового равновесия в дисперсных системах с учетом поверхностных явлений [1]. Численные расчеты для зависимости $\sigma(r)$ для ряда металлов были проведены с учетом влияния на температуру фазового равновесия по полученным соотношениям (4) и (5). В полученных зависимостях наблюдался максимум в области малых размеров.

В третьей главе диссертационной работы проводится последовательное рассмотрение зависимости температуры плавления наночастиц от их размера, а также температуры тройной точки на основе

классического (гиббсовского) подхода с использованием представлений о разделяющих поверхностях. Рассматривается твердая наночастица сферической формы (α -фаза) и макроскопическая фаза в виде собственного жидкого расплава (β -фаза). В этом случае имеет место выражение, согласованное с полученным выше выражением для зависимости $\sigma(r)$ при условии постоянства давления в макроскопической β -фазе

$$T_{m}(r) = T_{\infty} - D \frac{2\sigma_{\infty} \nu_{\infty}^{(\alpha)}}{\left(S_{\infty}^{(\beta)} - S_{\infty}^{(\alpha)}\right)} \cdot \frac{\exp\left[D_{0}\operatorname{arctg}\left(\frac{2r + b\delta}{\delta D_{0}}\right)\right]}{\left[\left(r + a\delta\right)^{m}\left(r^{2} + b\delta r + c\delta^{2}\right)^{n}\right]},$$
(7)

где
$$D = \exp[-D_0 arctg(\infty)], D_0 = \sqrt{4c - b^2}, m = \frac{a^2}{a^2 - ab + c}, n = \frac{c - ab}{2(a^2 - ab + c)}.$$

При этом значения a, b, и c зависят от $d=1+\Delta\delta/\delta$ и находятся из совместного решения трех уравнений a+b=2d, ab+c=2, ac=2/3.

Для учета изменения молярного объема и скачков энтропий, можно использовать линейные законы. Тогда получается соотношение

$$(T_{m}(r) - T_{\infty})^{2} - \frac{2}{3\alpha - \overline{b}} (T_{m}(r) - T_{\infty}) = \frac{2D}{3\alpha - \overline{b}} \cdot \frac{2\sigma_{\infty} \upsilon_{\infty}^{(\alpha)}}{\left(S_{\infty}^{(\beta)} - S_{\infty}^{(\alpha)}\right)} \cdot \frac{\exp\left[D_{0}\operatorname{arctg}\left(\frac{2r + b\delta}{\delta D_{0}}\right)\right]}{\left[(r + a\delta)^{m} (r^{2} + b\delta r + c\delta^{2})^{n}\right]},$$
 (8)

где α — линейный коэффициент теплового расширения, $\bar{b}=\frac{b_0}{\Delta S^{(\alpha \to \beta)}},$ $b_0=8,742\cdot 10^{-4}~\rm{Дж/(K^2\cdot моль)}~\rm{для}~\rm{OЦK-,}~\Gamma ЦK-$ и ГПУ-структур предплавления.

Получаемое соотношение (8), относящееся к равновесию твердое теложидкость, достаточно трудно использовать для практических расчетов. Это связано с тем, что нет выражения для параметра Толмена на межфазной границе кристалл-жидкость, а также отсутствует температурный коэффициент межфазного натяжения на линии плавления $(d\sigma/dT)_{\infty}$. В связи с этим, целесообразно рассматривать равновесие в системах твердая частица сферической формы (α -фаза) – насыщенный пар (γ -фаза) и жидкая нанокапля сферической формы с таким же радиусом на границе с паром. Тогда зависимости $\sigma^{(\alpha\gamma)}(r)$, $\sigma^{(\beta\gamma)}(r)$ и $(d\sigma^{(\alpha\gamma)}/dr)_{\rho(\gamma)}$, $(d\sigma^{(\beta\gamma)}/dr)_{\rho(\gamma)}$ будут уже

относиться к соответствующим фазам на границе с паром. В этом случае искомую зависимость $T_m(r)$ можно найти, как точку пересечения линий сублимации и испарения. В итоге получим выражение, по которому достаточно удобно производить численные расчеты.

$$T_{m}(r) = T_{\infty} \left\{ 1 - \frac{2\upsilon_{\infty}^{(\alpha)}}{r \cdot \Delta H_{\infty}^{(\alpha\beta)}} \left(\sigma^{(\alpha)}(r) - \frac{\upsilon_{\infty}^{(\beta)}}{\upsilon_{\infty}^{(\alpha)}} \sigma^{(\beta)}(r) \right) \right\}. \tag{9}$$

В уравнении (9) были приняты следующие обозначения:

$$\sigma^{(\alpha)} \equiv \sigma^{(\alpha\gamma)}, \, \sigma^{(\beta)} \equiv \sigma^{(\beta\gamma)}, \, \Delta H_{\infty}^{(\alpha\beta)} = \Delta H_{\infty}^{(\alpha\gamma)} - \Delta H_{\infty}^{(\beta\gamma)}.$$

Расчетная формула (9) значительно упрощается для случая больших радиусов и может быть записана в виде

$$T_{m}(r) = T_{\infty} \left[1 - \frac{2\upsilon_{\infty}^{(\alpha)}\sigma_{\infty}^{(\alpha)}}{\Delta H_{\infty}^{(\alpha\beta)}} \left(\frac{1}{r + 2\delta_{p}^{(\alpha)}} - \frac{\upsilon_{\infty}^{(\beta)}}{\upsilon_{\infty}^{(\alpha)}} \frac{\sigma_{\infty}^{(\beta)}}{\sigma_{\infty}^{(\alpha)}} \frac{1}{r + 2\delta_{p}^{(\beta)}} \right) \right], \tag{10}$$

где
$$\delta_p^{(\alpha)} = \delta^{(\alpha)} + \frac{v_\infty^{(\alpha)} T_{\kappa un}}{\Delta H_\infty^{(\alpha\gamma)}} \left(\frac{d\sigma^{(\alpha)}}{dT}\right)_\infty, \, \delta_p^{(\beta)} = \delta^{(\beta)} + \frac{v_\infty^{(\beta)} T_{\kappa un}}{\Delta H_\infty^{(\beta\gamma)}} \left(\frac{d\sigma^{(\beta)}}{dT}\right)_\infty,$$

 $T_{\kappa un}$ — температура кипения.

В этой же главе было получено уравнение для размерной зависимости температуры тройной точки в трехфазной однокомпонентной системе твердая наночастица—жидкий расплав —насыщенный пар (α - β - γ -равновесие). Оно имеет вид:

$$T^{*}(r) = T_{\infty}^{*} - \frac{2\sigma_{\infty}^{*} \upsilon_{\infty}^{(\alpha)}}{\left(s_{\infty}^{(\beta)} - s_{\infty}^{(\alpha)}\right)\left(1 - M_{0}\right)} D \frac{\exp\left[D_{0}\operatorname{arctg}\left(\frac{2r + b\delta}{\delta\sqrt{4c - b^{2}}}\right)\right]}{\left[\left(r + a\delta\right)^{m}\left(r^{2} + b\delta r + c\delta^{2}\right)^{n}\right]},$$
(11)

где T_{∞}^{*} — температура тройной точки макроскопического образца, σ_{∞}^{*} — поверхностное натяжение на плоской границе при температуре T^{*} .

По полученному соотношению (7) были проведены численные расчеты размерной зависимости температуры плавления наночастиц платины, золота и алюминия (рис.3, 4, 5). Численные значения параметра Толмена δ вычислялись, следуя [4]. Температура плавления массивного образца

принималась равной температуре плавления на плоской границе, так как их отличия не значительны.

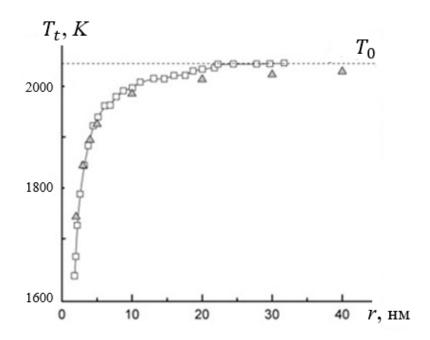


Рисунок 3 –Размерные зависимости температуры плавления наночастиц платины (∆ – наши расчеты по (7), □ – данные из [5])

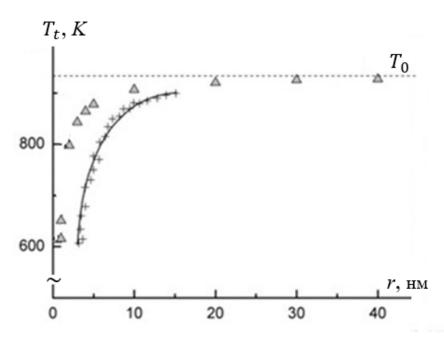


Рисунок 4 — Размерные зависимости температуры плавления наночастиц алюминия (Δ — наши расчеты по (7), + — данные из [6])

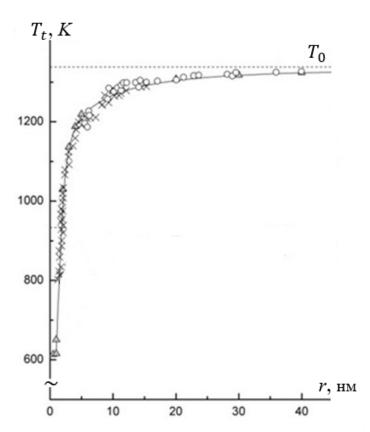


Рисунок 5 — Размерные зависимости температуры плавления наночастиц золота (Δ — наши расчеты по (7), \circ — данные из [7, 8], \times — данные из [9])

Обращает на себя внимание достаточно хорошее совпадение расчетных данных с результатами экспериментов по понижению температуры плавления наночастиц платины и золота (рис. 3 и 5). Более худшее согласие теории и эксперимента наблюдалось для наночастиц алюминия с радиусом 5 нм, где наибольшая погрешность составляет ~12% (рис.4).

Результаты расчетов с использованием соотношения (10) приведены в таблице 3 и при указанных размерах частицы, мало отличаются от более точных значений, рассчитанных на основе соотношения (9). Как видно из этой таблицы, результаты расчетов хорошо согласуются с экспериментальными данными, несмотря на использование приближенного соотношения (10). Погрешность не превышает ~1,3%.

Таблица 3 – Размерная зависимость температуры плавления для сферических наночастиц олова

r,	T, K							
HM	Pa							
	по уравнению	Эксперимент						
	(10)	Гиббса-Томсона	[10]					
20,0	500,9	497,8	496					
15,0	498,3	495,3	491					
10,0	491,3	490,5	486					
5,0	453,0	476,1	450					
3,3	380,8	461,1	386					
2,5	273,9	447,1	-					
1,8	1,3	425,2	-					

В четвертой главе диссертации приведены результаты по изучению размерных зависимостей калорических величин (энтропии и теплоты монометаллических наночастиц. Так, с использованием термодинамики дисперсных систем И концепции разделяющих поверхностях, было получено выражение для размерной зависимости плавления $\Delta S(r)$ при условии ииподтне постоянства давления макроскопической фазе, которое имеет вид:

$$\Delta S^{(\alpha \to \beta)}(r) = \Delta S_{\infty}^{(\alpha \to \beta)} \left[\left(1 + \frac{2\delta_{P}}{r} \right) \left(1 + \frac{2\alpha_{\nu}}{r} \right) \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^{2}}{r^{2}} + \frac{\Delta \delta}{\delta} \right) \right]^{-1}, \tag{12}$$

где $\delta_P = \delta + \Delta \delta$, α_v — коэффициент линейного расширения, $\Delta S_{\infty}^{(\alpha \to \beta)}$ — энтропия фазового перехода для массивного образца.

Уравнение (12) позволяет находить значение скачка энтропии плавления с изменением размера наночастицы.

Совместимое с (12) выражение для размерной зависимости теплоты плавления или теплоты фазового перехода, справедливое и для больших дисперсных частиц имеет вид:

$$\Delta H^{(\alpha \to \beta)}(r) = \Delta H_{\infty}^{(\alpha \to \beta)} \frac{1 - \frac{2\sigma_{\infty} \nu_{\infty}^{(\alpha)}}{r \Delta H_{\infty}^{(\alpha \to \beta)}}}{\left(1 + \frac{2\sigma_{\infty}}{r}\right) \left(1 + \frac{2\sigma_{\infty}}{r}\right) \left(1 + \frac{\sigma_{\infty}}{r} + \frac{\sigma_{\infty}}{\sigma_{\infty}}\right)},$$
(13)

где $\Delta H_{\infty}^{(\alpha o eta)}$ — теплота фазового перехода для массивного образца.

Проведенный анализ (12) и (13) демонстрирует уменьшение величин энтропии $\Delta S^{(\alpha \to \beta)}$ и теплоты плавления $\Delta H^{(\alpha \to \beta)}$ при одновременном уменьшении радиуса поверхности натяжения r.

Также в четвертой главе в рамках диссертационного исследования были найдены зависимости калорических параметров $\Delta S^{(\alpha \to \beta)}$ и $\Delta H^{(\alpha \to \beta)}$ от размера наночастиц при фиксированной дисперсности (r=const).

$$\Delta S_r^{(\alpha \to \beta)} = \Delta S_{\infty}^{(\alpha \to \beta)} \cdot \frac{1 + \frac{2\delta}{r} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} \right)}{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^2}{r^2} \frac{\Delta \delta}{\delta} \right]}.$$
 (14)

Искомая величина $\Delta H^{(\alpha \to \beta)}$ для частицы с заданной степенью дисперсности r=const и T=const находится, как произведение выражения (14) и температуры, т.е.

$$\Delta H_r^{(\alpha \to \beta)} = \Delta S_r^{(\alpha \to \beta)} T. \tag{15}$$

При анализе полученного соотношения (14) необходимо учесть знак знаменателя. Он определяется в соответствии со знаком температурного коэффициента межфазного натяжения $(d\sigma/dT)_{\infty}$, который, в свою очередь, фигурирует в выражении для параметра $\Delta \delta$. При продолжении линии плавления в однокомпонентной системе в область температур ниже тройной точки по [11], межфазное натяжение проходит через максимум на границе кристалл-жидкость. Следовательно, в соответствии с теоремой Нернста, имеет место уменьшение скачка энтропии, что приводит к положительному коэффициента температурного межфазного натяжения. температурах выше тройной точки величина $(d\sigma/dT)_{\infty}$ отрицательной. Причиной этого является рост амплитуды колебаний атомов. В этом случае знак температурного коэффициента межфазного натяжения меняется на противоположный, т.е. с отрицательного на положительный. Поэтому в соотношении (14) параметр $\Delta \delta$ инвертирует свой знак.

По полученному соотношению (12) были выполнены расчеты размерной зависимости энтропии плавления наночастиц олова и показаны на рис. 6. Как видно, результаты расчетов хорошо согласуются с экспериментальными данными [14] в области больших размеров. В области малых размеров наши данные сравнивались с результатами расчетов, выполненными в работах [12, 13].

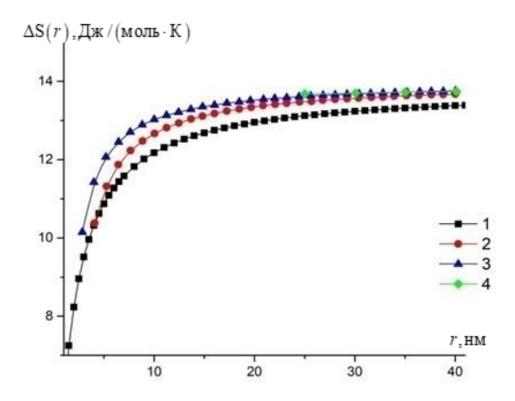


Рисунок 6 — Размерные зависимости температуры плавления наночастиц олова (1 — расчеты по формуле (12), 2 и 3 — результаты расчетов [12, 13], 4 — экспериментальные данные [14])

Также были выполнены расчеты размерной зависимости теплоты плавления по полученному выражению (13) для наночастиц натрия и олова (таблица 4).

Таблица 4 — Размерная зависимость теплоты плавления $\Delta H^{(\alpha \to \beta)}$ наночастиц сферической формы от их размера r

Нано-	Радиус поверхности натяжения r , нм									
частица	0,5	1	2	3	4	5	10	20	30	40
Na	1224	1806	2167	2307	2373	2425	2517	2556	2571	2578
Sn	3983	5276	6062	6359	6498	6603	6795	6883	6921	6938

Проделанные расчеты демонстрируют уменьшение скрытой теплоты плавления с уменьшением размера. Сравнение с экспериментом [15] для олова демонстрируют хорошее совпадение при больших размерах. При малых размерах погрешность составляет около 14%. Это можно объяснить особенностями эксперимента, в котором частицы олова получались путем конденсации на инертной подложке SiN. Настоящие расчеты справедливы для металлических наночастиц сферической формы, а в эксперименте их форма не известна. Если предположить, что они были правильной кубической формы (r-длина ребра), то в расчетной формуле (13) необходимо вводить множитель 4 вместо 2, что снижает теплоту плавления наночастиц олова. В таком случае наши расчеты лучше совпадают с экспериментальными данными [15].

Пятая глава посвящена исследованиям теплового расширения монометаллических наночастиц в зависимости от их размера. В общем случае, как известно, смещение среды в наночастице с изменением температуры будут иными по сравнению с макроскопическим веществом. Линейный коэффициент термического расширения кристалле отношению γ/β^2 , β пропорционален гле И коэффициенты, характеризующие гармоническую ангармоническую И составляющие квазиупругой силы взаимодействия. Уменьшение координационного числа в кристалле и связанное с этим уменьшение энергии сцепления в расчете на атом, будут приводить к изменению указанных силовых постоянных, и в конечном итоге, к изменению коэффициента термического расширения.

Как показал обзор, проведенный в первой главе диссертации, в настоящее время практически отсутствуют систематические исследования по размерной зависимости коэффициента теплового расширения наночастиц. Имеющиеся данные малочисленны И относятся чаще всего К эффекты консолидированным наноматериалам, где размерные МОГУТ маскироваться другими факторами, в том числе, неравновесностью состояния.

В этой главе была предпринята попытка рассмотрения влияния размера на объемный коэффициент термического расширения наночастицы сферической формы (α_V), находящейся в равновесии с окружающей средой. Примером может служить металлическая наночастица в собственном паре макроскопического размера. Для зависимости $\alpha_V(r)$ было получено соотношение:

$$\alpha_{V}(r) = \alpha_{V\infty} \left(1 - \frac{2}{\alpha_{V\infty}(r + 2\alpha_{v})} \frac{d\alpha_{v}}{dT} \right) \left(1 - \frac{2}{3} \frac{\alpha_{v}}{\alpha_{V\infty}(r + 2\alpha_{v})} \right), \tag{16}$$

где $\alpha_v = K_\infty \sigma_\infty$, K_∞ – коэффициент изотермической сжимаемости массивного образца, σ_∞ – поверхностное натяжение на плоской поверхности, $\alpha_{V\infty}$ – объемный коэффициент термического расширения для массивного образца, r –радиус поверхности натяжения.

По формуле (16) были проведены численные расчеты для наночастиц олова сферической формы в твердом состоянии (рис. 7). Нетрудно видеть, что с уменьшением радиуса поверхности натяжения увеличивается объемный коэффициент теплового расширения.

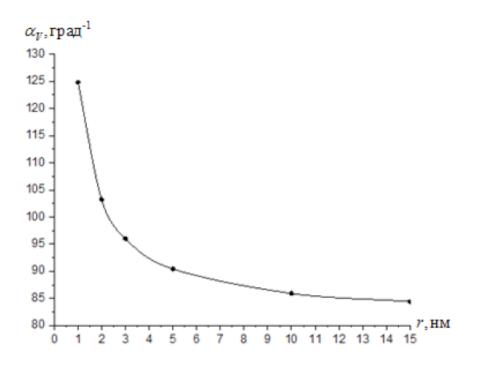


Рисунок 7 — Размерная зависимость изобарического коэффициента объемного расширения наночастицы олова в твердом состоянии (расчет по (16))

В этой же главе диссертации было проведено более строгое рассмотрение зависимости коэффициента теплового расширения наночастицы от ее размера на основе теории фазового равновесия в дисперсных системах с учетом явлений. последовательным поверхностных Было получено размерной коэффициента объемного соотношение ДЛЯ зависимости расширения дисперсной частицы в виде:

$$\alpha_{V}(r) = \frac{3}{2} \frac{S^{(\alpha \to \beta)} r}{\upsilon^{(\alpha)} \sigma} \left[1 + \frac{2\delta}{r} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^{2}}{r^{2}} + \frac{\Delta \delta}{\delta} \right) \right], \tag{17}$$

где $v^{(\alpha)}$ – молярный объем дисперсной частицы.

Для частиц с большим радиусом поверхности натяжения r после математических преобразований и использования формулы Толмена для зависимости $\sigma(r)$ [2], что является корректным для этого размерного диапазона, из (17) следует соотношение, связывающее коэффициент объемного расширения дисперсной частицы с ее размером при условии малой кривизны:

$$\alpha_{V}(r) = \alpha_{\infty} \cdot \frac{\left[1 + \frac{2\delta}{r} \left(1 + \frac{\delta}{r} + \frac{1}{3} \frac{\delta^{2}}{r^{2}} + \frac{\Delta \delta}{\delta}\right)\right]}{\left(1 - \frac{2\upsilon_{\infty}\sigma_{\infty}}{r \cdot \Delta H_{\infty}}\right)},$$
(18)

где нижний индекс « ∞ » у соответствующих величин показывает их принадлежность к макроскопическому случаю, т.е. к плоской поверхности $(r \rightarrow \infty)$.

По соотношению (18) также были проведены численные расчеты для сферических наночастиц олова и свинца в твердом состоянии (рис. 8 и 9). Как следует из результатов расчетов, наблюдается повышение коэффициента теплового расширения наночастиц при уменьшении их размера.

Также было проведено сравнение результатов наших расчетов для наночастицы свинца с результатами, полученными в [16]. В этой работе расчеты были проведены с учетом формы и размера наночастиц.

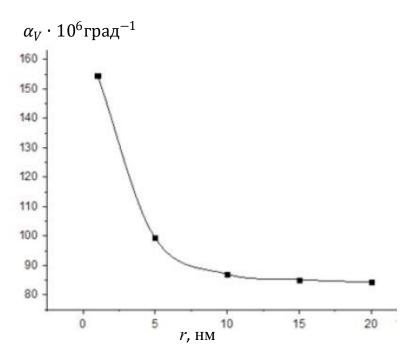


Рисунок 8 — Размерная зависимость коэффициента объемного расширения наночастицы олова в твердом состоянии (расчет по (18))

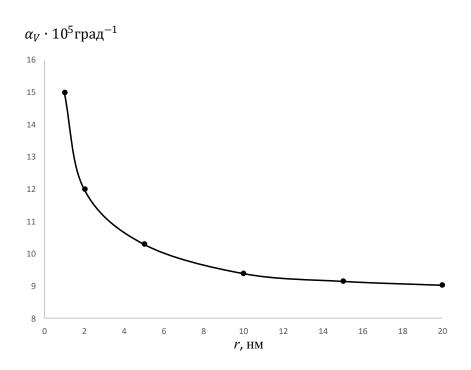


Рисунок 9 – Размерная зависимость коэффициента объемного расширения наночастицы свинца в твердом состоянии (расчет по (18))

Проведенный анализ показал, что для частиц с размерами 5 нм и 20 нм наблюдается достаточно хорошее совпадение результатов с нашими расчетами. В этом случае максимальная погрешность достигала 1,38%.

ОБЩИЕ ВЫВОДЫ

- 1. С применением аппарата термодинамики двухфазных систем с искривленными межфазными границами получено уравнение для размерной зависимости ПН сферических наночастиц, находящихся на границе с массивной фазой при условии постоянства давления в ней и с учетом влияния температуры на фазовое равновесие, из которого следует два основных типа данной зависимости (монотонная и немонотонная с максимумом). Такой характер поведения зависимости $\sigma(r)$ наблюдался в изобарических условиях, что не является характерным при выполнении условия постоянства температуры в массивной фазе.
- 2. Был обнаружен эффект смещения максимума ПН в диапазон меньших радиусов кривизны поверхности натяжения. При этом величина поверхностного натяжения демонстрирует устойчивую тенденцию к снижению, что объясняется фактом учета размерных зависимостей молярных объемов и скачков энтропии в процессе плавления.
- 3. С использованием аппарата термодинамики дисперсных систем и метода разделяющих поверхностей было выведено выражение для нахождения зависимости температуры плавления наночастиц сферической формы, находящихся на границе с жидкой макроскопической фазой. Из полученного уравнения как частные случаи получаются новые соотношения для зависимости температуры плавления от размера дисперсной частицы, в том числе известное уравнение Гиббса-Томсона.
- 4. Для трехфазной однокомпонентной системы (твердая наночастица—жидкий расплав—насыщенный пар, α-β-γ-равновесие) получено новое соотношение, связывающее температуру плавления с размером частицы. Было показано, что температура тройной точки снижается при уменьшении радиуса поверхности натяжения или с увеличением кривизны поверхности, разделяющей твердую и жидкую фазы.
- 5. В рамках термодинамической теории дисперсных систем с применением метода разделяющих поверхностей, были выведены новые

описывающие зависимости скачков энтропии теплоты уравнения, плавления наночастиц сферической формы для двух случаев: постоянстве давление в макроскопической фазе и постоянстве радиуса поверхности натяжения, T.e. при заданной степени дисперсности однокомпонентной Проведенные системы. расчеты полученным соотношениям показали монотонное уменьшение данных калорических характеристик cуменьшением радиуса поверхности натяжения монодисперсных частиц.

- 6. Учитывая поверхностные явления и соответствующие выводы из теории фазового равновесия дисперсных систем, было получено соотношение, описывающее зависимость коэффициента термического расширения наночастиц от их размера в условиях постоянного давления в массивной фазе.
- 7. С использованием полученных новых соотношений были выполнены расчеты теплофизических свойств (поверхностного натяжения, температуры, энтропии и теплоты плавления, а также коэффициента теплового расширения) однокомпонентных сферических наночастиц 14-ти металлов, которые продемонстрировали хорошее согласие с экспериментом.

Цитируемая литература

- 1. Русанов, А.И. Фазовые равновесия и поверхностные явления / А.И Русанов. – Л.: Химия, 1967. – 388 с.
- 2. Tolman, R.C. The effect of droplet size on surface tension / R.C. Tolman // Journal of Chemical Physics. 1949. V. 17. P. 333-337.
- 3. Шебзухов, З.А. Поверхностное натяжение и поверхностная энергия металлических наночастиц / З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов // Известия КБГУ. 2010. №1. С.17-58.
- 4. Шебзухова, М.А. Параметр Толмена, автоадсорбция и поверхностное натяжение на плоских и искривленных поверхностях жидких металлов / М.А. Шебзухова, З.А. Шебзухов, А.А. Шебзухов // Известия РАН. Серия физическая. 2010. Т. 74. № 5. С. 729-736.
- 5. Sheng, H.W. Melting and freezing behavior of embedded nanoparticles in ball-milled *Al*-10*Wt*% / K. Lu, E. Ma // Acta Mater. − 1998. − V.46. − №14. − P.5195-5205
- 6. Коверда, В.П. Влияние флуктуации и неравновесной огранки на плавление металлических кристаллов / В.П. Коверда, В.Н. Скоков, В.П. Скрипов // Физика металлов и металловедение. −1981. − Т.51. − №6. − С.1238-1244.
- 7. Behrndt, K.H. Initially liquid islands or surface melting? / K.H. Behrndt // Thin Solid Films. 1969. V.3. №5. P.R30-R32.
- 8. Жданов, Г.С. Исследование кинетики роста тонких слоев непосредственно в электронном микроскопе / Г.С. Жданов // Известия АН СССР. Серия физическая. 1972. Т. 41. № 3. С. 1004-1009.
- 9. Chopra, K. L. Thin Film phenomena / K.L. Chopra. N.Y.: Mc. Graw Hill, 1969. 848 p.
- 10. Скрипов, В.П. Спонтанная кристаллизация переохлажденных жидкостей / В.П. Скрипов, В.П. Коверда. М.: Наука, 1984. 232 с.
- 11. Скрипов, В.П. Фазовые переходы кристалл-жидкость-пар и термодинамическое подобие / В.П. Скрипов, М.З. Файзулин. —

- М.: Физматлит, 2003. 160 с.
- 12. Jiang, Q. Entropy for solid-liquid transition in nanocrystals / Q. Jiang, F.G. Shi // Materials Letters. 1998. V.37. P.79-82.
- 13. Jiang, Q. Melting enthalpy depression of nanocrystals / Q. Jiang, C.C. Yang, J.C. Li // Materials Letters. 2002. V.56. P.1019 1021.
- 14. Safaei, A. Size-dependent thermal stability and the smallest nanocrystal / A. Safaei, M.A. Shandiz // Physica E. 2009. V.41. P.359–364.
- 15. Lai, S.L. Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements / S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen // Phys. Rev. Lett. 1996. V.77. P.99 102.
- 16. Goyal, M. Shape, size and temperature dependency of thermal expansion, lattice parameter and bulk modulus in nanomaterials / M. Goyal, B.R.K. Gupta // PRAMANA. Journal of Physics. 2018. V.90. №80. P.1-8.

Список публикаций автора по теме диссертации

- 1. Кузамишев, А.Г. Размерная зависимость поверхностного натяжения наночастиц / **А.Г. Кузамишев**, М.А. Шебзухова, К.Ч. Бжихатлов, А.А. Шебзухов // Известия КБГУ. 2019. Т.IX. №4. С.50-56.
- 2. Кузамишев, А.Г. Влияние размера на термическое расширение наночастиц / **А.Г. Кузамишев**, М.А. Шебзухова, А.А. Шебзухов // Известия КБГУ. 2019. Т.IX. –№4. С.57-62.
- 3. Кузамишев, А.Г. Влияние размера на температуру плавления наночастиц / **А.Г. Кузамишев**, М.А. Шебзухова, А.А. Шебзухов // Известия РАН. Серия физическая. 2021. Т.85. №9. С.1263-1266.
- 4. Кузамишев, А.Г. Размерная зависимость энтропии плавления наночастиц сферической формы / **А.Г. Кузамишев**, М.А. Шебзухова, К.Ч. Бжихатлов // Микро- и нанотехнологии в электронике. Материалы XII Международной научно-технической конференции. 2021. С.42-46.
- 5. Кузамишев, А.Г. Размерная зависимость теплоты плавления наночастиц сферической формы на границе твердое-жидкость / **А.Г. Кузамишев**, М.А. Шебзухова, К.Ч. Бжихатлов // Современные методы исследования и диагностики поверхности. Материалы Международной научно-практической конференции. 2021. С.116-119.
- 6. Кузамишев, А.Г. Размерные зависимости теплофизических свойств наночастиц. Поверхностное натяжение / **А.Г. Кузамишев**, М.А. Шебзухова, К.Ч. Бжихатлов, А.А. Шебзухов // Теплофизика высоких температур. − 2022. Т.60. №3. С.343-349.
- 7. Кузамишев, А.Г. Размерные зависимости теплофизических свойств наночастиц. Энтропия и теплота плавления / **А.Г. Кузамишев**, М.А. Шебзухова, К.Ч. Бжихатлов // Теплофизика высоких температур. 2023. Т.61. №5. С.700 705.